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PERTURBATION-WAVE PROPAGATION IN PETROLEUM CONTAINING TAR 

V. A. Baikov and R. N. Bakhtizin UDC 532.535.2:532.135 

A study is made on nonlinear-wave propagation in petroleum containing tar. 

Recent studies have shown that high-viscosity petroleum containing much tar shows re- 
laxation behavior [I, 2], which is due to clusters consisting of hundreds or more macromole- 
cules. Such a medium resembles a conglomerate material [3] in having local deformation 
viscosity due to the compressibility and the elasticity of these particles, which leads to 
pressure relaxation. In the propagation of a nonstationary wave in such a medium, there may 
be an effect from the spread in the impact momentum, as has been found in experiments [4]. 

The following is a system of equations describing the planar one-dimensional motion of 
such a medium, which includes the equations of continuity and motion together the Tait equa- 
tion for each phase [5] 

091 091v~ - O, 09----2-2~ 092v-----2-"-~= O, 
Ot Ox Ot Ox 

o divi Opi 
Pi = P ! g i ,  92 == P2~ zti + ae  --~ 1, 9 i  dt :'- - - a i  Ox F~, 

p~ ~ 

9 2 - -  
d2u2 
dt 

~2 - - ~ - -  + F~, F~ =- aolao2K~ (v~ - -  vl), 

n~ [ \  o~ ) - -  ' - - ~ -  Ot +v~-3-E' ~=1' 2. 

(i) 
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System (I) is supplemented with the relaxation equation relating the pressures of the 
phases, which incorporates the inertial character of the pressure recovery on loading: 

p~ = p~ ~ 0 Op~ (2) 
' ~ ' 

where 0 is the parameter characterizing the relaxation behavior. 

We consider perturbations of small but finite amplitude with characteristic frequencies 
<< Ku, 1/8; then from (i) and (2) we have as follows up to terms of order e 2 (e - vi/c 0 - 

, - 2  l~oi): Pi /P0C0 - ~i' 

1 ~ U  ~ V  ~ V  
- - - - ,  (3) 

c~ at ~ Ox ~ O x ~  
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(4) 

Here primes denote the deviations of the corresponding quantities from their equilibrium values. 

System (3) and (4) describes the motion of weak waves in saturated porous media, which 
has been examined in detail in [6], if one uses the linear approximation and neglects pres- 
sure relaxation between phases. If we assume that the dissipative and nonlinear terms are 
small by comparison with the others, they can be considered as a certain perturbation. The 
effects of these terms are small only at distances of the order of the wavelength, but their 
contributions accumulate at large distances and become substantial. We therefore apply the 
slowly-varying amplitude method [7] to (3) and (4) to get the corresponding coordinate sys- 
tem T = t - x/c 0 that 

oV ~V oV ~V (5) 
ax a~ o~ 2 
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where 

In deriving (5), we have used the fact that the frequency is small by comparison with 
the reciprocal of the relaxation time, i.e., m8 << I; this condition should be obeyed for 
the upper limit to the wave spectrum if the signal is not monochromatic. 

Equation (5) is a Burgers equation, and its solutions are familiar [8]; the dissipative 
term on the right in (5) is due to differences in phase inertia and to the relaxation be- 
havior, being dependent on the volume concentrations of the phases, the densities, the coef- 
ficient of friction between phases, and the relaxation time. 

The experimental data of [4] show that the main contribution to the dissipative term 
in (5) comes from the inertial pressure recovery in the mixture, while the contribution due 
to differences in inertia between phases is small. This enables one to estimate the charac- 
teristic pressure recovery time. The width F of the front of a stationary shock wave is 
F = 7m/u0~, where u 0 is the amplitude of the initial perturbation. One can use the wave- 
forms for shock-wave propagation in tar-bearing oils given in [4] (u 0 = i0 m/see, ~02 = 0.i, 
8x = 0.58"10-9 N.sec/kg, 82 = 0-41"10-9 N.sec/kg, P~l = 0.8"i0~ kg/m3, P~2 = 10s kg/m3, 

= 1 kHz and r = i) to get that 8 = I0 "u sec. 
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Then the characteristic pressure-recovery time on loading is 10 -4 sec, which corresponds 
to a shock-wave thickness of 0.i m, which is somewhat less than the length of the relaxation 
zone in a bubble liquid [9]. 

The speed of sound is dependent on the volume concentrations of the phases, the compres- 
sibilities, and the densities; for the values given for Pi and 8i, i = I, 2, the dependence 
of the speed of sound on concentration is in qualitative agreement with the measurement of 
[i0] (the speed decreases as ~02 increases). 

These relationships enables one to use a small number of shock-wave propagation re- 
cordings for a known tar concentration to evaluate the relaxation in the phase interaction. 

The analysis thus shows that the wave propagation is affected from two-velocity effects 
arising from the relative motion of the continuous phase (petroleum) and dispersed phase 
(tar) only to a small extent by comparison with the effects from the pressure-recovery relax- 
ation. 

NOTATION 

vi, Pi, Pi, =i, velocity, pressure, true density, and volume concentration of phases, 
i = 1 corresponds to the carrier phase, i = 2 to the dispersed phase; KB, interphase fric- 
tion coefficient; c i, equilibrium velocity of sound in phase; ni, constants; P~i, ~0i, equi- 
librium values of phase densities and volume concentrations, respectively; c o = (~p0) -I/2, 
equilibrium velocity of sound in the medium; P0 = ~01P~1 + ~02P~2, equilibrium density of 
the medium; 8i = (P~iC2i)-I/2, compressibility of the i-th phase; V = ~01vl + ~02v2, mean 
volume velocity of the medium; U = p0-1(=01p~ivl + ~02p~2v2), mean mass velocity of the 
medium; ~ = ~o1~1 + ~02~2, compressibility; p -i = ~olP~ + ~02P~" 
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